Your Position: Home - Machinery - The Pros & Cons of Battery Cell Types: Cylindrical, ...
Lithium-ion batteries will continue powering e-mobility for the foreseeable future, and having explored the six different battery chemistry types; we now focus on the battery cells housing these chemistries. Between cylindrical, prismatic, and pouch-shaped forms, cylindrical are the most common, although battery manufacturers will leverage each types distinct features that suit the application. Cost is certainly one determining factor, but equally important are the contents within the cells structures.
For more information, please visit HUIYAO.
Here, well look at each cells profile, advantages, disadvantages, and applications they might be suited for. Its worth noting that while the cylindrical shape is the most technologically mature of the three types, prismatic and pouch cells continue to grow steadily.
Cylindrical batteries have achieved the highest market penetration, powering everything from household gadgets such as TV remotes via the infamous AA or AAA batteries to being specifically engineered to power 40-ton trucks. This is possible due to the vast size options available, though one of the most common is the model (18mm diameter, 65mm height, 0 representing the circular shape).
This cells anodes, cathodes, and separators are compressed in a sheet-like form, rolled up, and packaged into a cylinder case. Its a shape that makes automated manufacturing very easy, paving the way for mass production and rapid market dominance.
The main standard characteristics of this battery include high capacity, output voltage, and current discharge. Further, they perform well across a wide temperature range. This makes the shape ideal for electric vehicles, particularly off-highway (OHEV).
Prismatic cells are fast becoming favorites in the automotive industry. There arent many standard sizes to choose from, which could mean that automakers will need to design a battery case from scratch, as the standard sizes available might not suit their needs. However, since the shape makes for increased efficiency, design can be flexible for this structure. The negative trade-off, in this case, is the lack of a unified production process, which drives up costs.
Prismatic cells first entered the market to power gadgets that followed a similar profile to their flat rectangular shape, such as mobile phones, tablets, and medical devices. However, as testing in different applications continued, the cell technology developed and was scaled to begin powering larger devices. The flat, wide surface is ideal for packing density and is fast becoming a favorite for road-going vehicles.
As for the internal structure, the anode, cathode, and separator sheets are pressed together and rolled before fitting them into a rectangular metallic (aluminum or steel) or hard plastic casing. This hard-shell casing reduces the risk of bulging should pressure build-up internally.
Also known as polymer cells, pouch cells use a foil laminate bag-like structure instead of a hard casing like prismatic cells. The pouchs outer protective layers are usually made from nylon BOPA (Biaxially Oriented Polyamide) or PET (Polyethylene terephthalate), while the middle batteries are made of aluminum foil.
By using a soft aluminum coating, the size can be adapted to the use and intended battery mission, making it easier to manufacture different shapes, cuts, and sizes depending on what theyll be powering. This adaptability makes pouch cells ideal for applications that are tight on space, and since its a younger technology than cylindrical or prismatic cells, research and development is still at a relatively nascent stage.
In fact, OEMs and vehicle manufacturers have only started using this cell structure in vehicles and Non-Road Mobile Machinery (NRMM) recently. This means that as more tests are done and data collected, expect this technology to find use in more applications.
The high market maturity means that buyers have plenty of suppliers to choose from or switch between, as the latest technology is readily available to all, leading to minor differences in production costs and performance ratings. While this certainly counts as an advantage, since choice strengthens the buyers hand, it also means that cylindrical cells have almost peaked in terms of technological innovation. This is by no means an outright negative, as prismatic and pouch cells have plenty of catching up to do.
A critical advantage cylindrical cells offer that prismatic and pouch dont is how the circular shape enhances heat dissipation and mechanical stability. This is one of the reasons these are used at Xerotech, where we also individually fuse cells and encase each in fire retardant foam. This protects the entire module in short circuit or thermal events, as the threat is dealt with on a cellular level.
It must be said, however, that this shape also prevents the space from being used to its maximum potential, as the same gaps that help heat dissipation prevent more cells from being added to the module. Therefore, more cells would be needed to reach similar power levels as the prismatic type, and since the cells also need a mounting bracket to be kept in place, more weight is added to the pack.
Ideal for packing density, the more straightforward structure requires fewer electrical connections to be welded than cylindrical cells. Furthermore, given the size differences, in certain circumstances, one prismatic cell could contain the energy equivalent of 20-100 cylindrical cells. The shape also makes it easier to stack the cells, while the use of screw poles makes battery assembly and element replacement easier.
However, the downside to the shape is that more stress is placed on the electrode and separator sheets closer to the container corners. This could lead to electrode coating damage and an unequal electrolyte distribution, and heat dispersion also suffers with this shape, as theres no space between the cells. And while the lack of standard sizes means flexibility, the flip side is that the lack of standardization between models makes prismatic cells more expensive to produce.
The most recent addition to the market and the most flexible cell option, pouch cells offer high energy density and can be up to 40% lighter than steel or aluminum-cased batteries of equal capacity. The low-cost casing helps bring down the initial cost of production; however, since these cells have low-to-medium capacity, many would need to be welded together to function in industrial battery packs. This means that should a fault develop, the whole module would need to be replaced.
Furthermore, extra protection and design planning are needed to protect pouch cells since the casing is relatively fragile, too weak to prevent thermal events, and can swell up to 10% of the original size after 500 charge cycles. Sharp edges pose a severe threat, and the pouch sizes create distance between cooling mechanisms and the cell centre, making it harder to stop the creation of hot spots.
Despite the current safety concerns, future developments could see pouch cells become the cell structure for next-generation batteries. They offer up to 95% better packaging efficiency and better energy density, which makes it worth the extra testing and design planning needed to ensure the safety and functionality of this cell type to unlock its full potential. However, if safety and pouch structure integrity remain challenges, its unlikely pouch cells will find extensive use in diverse markets.
Cylindrical cells remain the best option for the OHEV market by offering increased safety and better mechanical stability while operating better across a broad spectrum of temperatures. While prismatic cells might offer better packing density, scalable and customizable platforms such as Xerotechs Hibernium® platform mitigate that difference.
Battery cell technology will continue developing, undoubtedly making for a more interesting lithium-ion battery market. Not only do end users get a plethora of choices, but battery manufacturers will be pushing each other to reach new innovative heights, developing better systems that will further power the change to a zero-emissions world.
Xerotech is intent on empowering this change, so if you want to find out just how we can power your application, reach out to a member of our team, and well be thrilled to electrify your operations.
Xerotech is an award-winning battery technology company solving one of our generations most significant challenges: industrial electrification.
Driven by a shared vision of a fully electric future, our talented team is making an impact on a global scale as Xerotech provides the first truly credible path to zero emissions and enables the electrification of machines that were previously too low-volume to be economically electrified.
Our Hibernium® battery pack platform adapts to the bespoke needs of your vehicle or application. With Hibernium®, you can choose your desired or preferred energy content, operating voltage range, physical dimensions, and even battery cell chemistry.
There are no design or engineering costs, even for one-off prototyping projects, making this solution one of the only viable options for low-volume, high-diversity projects.
Are you interested in learning more about prismatic cell assembly turnkey projects? Contact us today to secure an expert consultation!
Recommended article:The electrification of heavy-duty machinery is now available to every OEM and Integrator.
There are three main types of lithium-ion batteries (li-ion): cylindrical cells, prismatic cells, and pouch cells. In the EV industry, the most promising developments revolve around cylindrical and prismatic cells. While the cylindrical battery format has been the most popular in recent years, several factors suggest that prismatic cells may take over.
Because Laserax provides laser solutions for battery manufacturing, we are watching these developments closely. Before we go over whats coming, lets do a quick overview of the two types of batteries.
A prismatic cell is a cell whose chemistry is enclosed in a rigid casing. Its rectangular shape allows efficiently stacking multiple units in a battery module. There are two types of prismatic cells: the electrode sheets inside the casing (anode, separator, cathode) are either stacked or rolled and flattened.
For the same volume, stacked prismatic cells can release more energy at once, offering better performance, whereas flattened prismatic cells contain more energy, offering more durability.
Prismatic cells are mainly used in energy storage systems and electric vehicles. Their larger size makes them bad candidates for smaller devices like e-bikes and cellphones. Therefore, they are better suited for energy-intensive applications.
A cylindrical cell is a cell enclosed in a rigid cylinder can. Cylindrical cells are small and round, making it possible to stack them in devices of all sizes. Unlike other battery formats, their shape prevents swelling, an undesired phenomenon in batteries where gasses accumulate in the casing.
Cylindrical cells were first used in laptops, which contained between three and nine cells. They then gained in popularity when Tesla used them in its first electric vehicles (the Roadster and the Model S), which contained between 6,000 and 9,000 cells.
Cylindrical cells are also used in e-bikes, medical devices, and satellites. They are also essential in space exploration because of their shape; other cell formats would be deformed by the atmospheric pressure. The last Rover sent on Mars, for example, operates using cylindrical cells. The Formula E high-performance electric race cars use the exact same cells as the rover in their battery.
Shape is not the only thing that differentiates prismatic and cylindrical cells. Other important differences include their size, the number of electrical connections, and their power output.
Prismatic cells are much larger than cylindrical cells and hence contain more energy per cell. To give a rough idea of the difference, a single prismatic cell can contain the same amount of energy as 20 to 100 cylindrical cells. The smaller size of cylindrical cells means they can be used for applications that require less power. As a result, they are used for a wider range of applications.
Because prismatic cells are larger than cylindrical cells, fewer cells are needed to achieve the same amount of energy. This means that for the same volume, batteries that use prismatic cells have fewer electrical connections that need to be welded. This is a major advantage for prismatic cells because there are fewer opportunities for manufacturing defects.
Cylindrical cells may store less energy than prismatic cells, but they have more power. This means that cylindrical cells can discharge their energy faster than prismatic cells. The reason is that they have more connections per amp-hour (Ah). As a result, cylindrical cells are ideal for high-performance applications whereas prismatic cells are ideal to optimize energy efficiency.
Example of high-performance battery applications include Formula E race cars and the Ingenuity helicopter on Mars. Both require extreme performances in extreme environments.
The EV industry evolves quickly, and its uncertain whether prismatic cells or cylindrical cells will prevail. At the moment, cylindrical cells are more widespread in the EV industry, but there are reasons to think prismatic cells will gain in popularity.
First, prismatic cells offer an opportunity to drive down costs by diminishing the number of manufacturing steps. Their format makes it possible to manufacture larger cells, which reduces the number of electrical connections that need to be cleaned and welded.
Prismatic batteries are also the ideal format for the lithium-iron phosphate (LFP) chemistry, a mix of materials that are cheaper and more accessible. Unlike other chemistries, LFP batteries use resources that are everywhere on the planet. They do not require rare and expensive materials like nickel and cobalt that drive the cost of other cell types upward.
There are strong signals that LFP prismatic cells are emerging. In Asia, EV manufacturers already use LiFePO4 batteries, a type of LFP battery in the prismatic format. Tesla also stated that it has begun using prismatic batteries manufactured in China for the standard range versions of its cars.
The LFP chemistry has important downsides, however. For one, it contains less energy than other chemistries currently in use and, as such, cant be used for high-performance vehicles like Formula 1 electric cars. In addition, battery management systems (BMS) have a hard time predicting the batterys charge level.
You can watch this video to learn more about the LFP chemistry and why it is gaining in popularity.
When it comes to battery pack production demand, energy storage systems (ESS) are just as important as electric vehicles. ESSs are already using prismatic cells and it is very likely that they will keep using them. Prismatic cells have a longer cycle life, are less dangerous, and come at a low cost compared to cylindrical cells.
With its tabless cell design, high energy density, and low manufacturing cost, Teslas cylindrical cell is probably the most noteworthy battery cell at the moment. But recently, Elon Musk has talked about the advantages of prismatic cells, and Tesla has begun using them in certain car models.
The cylindrical cells havent been replaced by prismatic cells yet, but Teslas next move will be telling of what the future holds. Will they replace the s Nickel-Cobalt-Aluminum oxide (NCA) chemistry with the LFP chemistry? If so, will they switch to prismatic cells, the preferred format for this chemistry? With the increased cost of raw materials around the world, it is a strong possibility.
Let Us Know Your Application
For more information, please visit prismatic battery pack assembly turnkey projects.
40
0
0
Comments
All Comments (0)