Login

Your Name:(required)

Your Password:(required)

Join Us

Your Name:(required)

Your Email:(required)

Your Message :

Your Position: Home - Machinery - The Ultimate Guide to Choosing Continuous plating system

The Ultimate Guide to Choosing Continuous plating system

Author: becky

Apr. 29, 2024

Machinery

Guide to Selective and Brush Electroplating

UPDATE: (8/24/2021) SPC no longer offers brush plating services. This blog is for educational purposes only.

Please refer to our coatings, base materials, or plating methods pages to learn more about our services.

 

Contact us to discuss your requirements of Continuous plating system. Our experienced sales team can help you identify the options that best suit your needs.

Metal plating has been used for hundreds of years to provide objects and mechanical components with additional and desired properties of a specific metal. Depending on the preferred outcome, different types of metal or alloys including copper, aluminum, tin, gold, cadmium, rhodium, zinc, silver, nickel or chromium may be used in the plating process.

 

The reasons for plating a component or object in metal can range from just adding a nice, metallic aesthetic to a decorative object or a need for the essential physical, mechanical and chemical properties of the specific metal or alloy for performance purposes. Improved corrosion resistance, strength, durability, reduced friction, increased solderability and even changes to conductivity might all be factors in selecting a component for the plating process.

 

Whatever your reasons for selecting a component for metal plating, the process can usually be separated into two different types of processes: electroplating or electroless. Electroplating demands the use of an electric current, while electroless methods are the result of an auto-catalytic chemical reaction. Each method offers their own unique advantages and disadvantages, but either method allows for a coating of metal that will provide the selected component with important aesthetic and new physical properties.

 

In some cases, combining two or metals to create an alloy can offer advantages as well maximize the desired benefits of each metal selected. This can also help reduce costs without sacrificing quality. For example, when trying to improve corrosion using a zinc-nickel alloy with approximately 80-94 percent zinc and 6 to 20 percent nickel brings out the best properties in both metals. The addition of nickel slows the corrosion process. Zinc-nickel coated parts can help prevent the formation of white rust for up to 500 hours, and up to 1,000 hours for red rust during salt-spraying testing.

 

Electroplating and Electroless

Before we take a look at more specialized methods of metal plating, understanding the general process of both electroplating and the auto-catalytic chemical process of electroless methods will help better differentiate between the two.

 

Electroplating requires the use of an electric current, which is used to reduce dissolved metal cations, which are ions with a positive charge. The electric current allows the cations to form a thin metal coating onto the object in a process called electrodeposition. Electroplating allows for the change of surface properties of the selected object, making it suitable for increased corrosion resistance, reduced friction and other needed qualities which will help improve the durability and performance of the part.

 

Just like a circuit, the electroplating process relies on different components, or electrodes, to achieve the thin metal coating. The item selected for plating is the cathode — the negatively charged electrode, while the material or metal used makes up the anode — the positively charged electrode. Both components are immersed in an electrolyte bath containing metal salts and other ions to allow for the proper flow of electricity.

 

This is not the same technique used in electroless immersion as the external power supply must create the direct current to the anode to oxidize the metal atoms and dissolve them into the electrolyte solution. These dissolved metal ions in the solution are then reduced and begin to plate the object. The metal used for the anode continuously replenishes the ions in the electrolyte.

 

After the process is completed, the chemical, physical and mechanical properties of the object you selected for plating will be altered. For example, tensile strength and surface hardness might add the strength needed for a tool or part that could not perform under pressure prior to plating. By adding metal plating, you can also prevent dulling of the tool and reduce corrosion, which provides longevity.

Get the latest industry information and stay up to date with plating and metal finishing solutions.
Sign Up for our Newsletter

Electroless methods do not require the use of external electricity, but instead depend on an auto-catalytic chemical reaction. This process usually involves creating several reactions at once within a liquid solution where the component is immersed. These chemical methods force the desired metal to plate the object. Unlike electroplating, which requires two electrodes, electroless only uses one and does not rely on any external power source.

 

Instead, a reducing agent is used. One of the most common metals used in this type of plating is nickel, but other metals like gold, silver and copper can also be applied to components through electroless methods. One of the major benefits is that it is usually less costly because electrolyte baths and external power sources are not needed, which can help lower expenditures. In addition, electroless methods allow for flexibility in the size and shapes of objects that can be plated, but unfortunately, they are much slower and cannot achieve the thickness electroplating can.

 

In addition to lower utility bills, electroless makes it easier to achieve an even coating on parts and offers more flexibility in terms of volume and varying levels of finish brightness. As with electroplating, the chemical, physical and mechanical properties of the completed work piece will be altered, adding enhanced durability to the component.

 

What Is Selective Plating and Brush Plating?

When metal plating required in more localized areas. This process, which is related to electroplating is often referred to as selective plating, or brush plating.

 

The brush, which is usually a stainless steel body wrapped in cloth, holds a plating solution and inhibits the item from making direct contact. Through the use of low voltage, the brush dipped in plating solution allows for localized plating by an operator. Skilled operators can use this selective electroplating service to apply an even distribution of plating material across the items localized area. Brush plating allows for spot-plating techniques, making it useful in both the repair and refurbishment of parts and components. Unlike full electroplating techniques which require an immersion in an electrolyte bath, selective plating allows the operator to target a specific area using a plating solution of electrolyte and anode connected to a wire.

 

In many ways, brush plating may appear similar to welding when compared to other forms of electroplating because it uses a flexible and maneuverable brush attached to a power supply. The cathode is still the component you have selected for plating, but the anode is now connected to a handle and wrapped in an absorbing material, usually cloth. The cloth absorbs the electrolyte during the brush plating process.

 

As the operator moves the anode over the cathode, it completes the circuit and supplies the electrolyte continuously. The electrolyte can be supplied via a pump or by dipping.

 

The Advantages of Brush Plating vs. Immersion Washing

One of the greatest advantages that brush plating services, or selective electroplating services, offer over a traditional immersion bath — or tank plating methods, is flexibility. The equipment for brush plating is mobile and can be done anywhere — from the workshop to onsite at a customer’s location without requiring the transportation or shipment of heavy and delicate components.

 

This is ideal and much faster than traditional electroplating techniques. It allows for the service, repair and refurbishment of parts quickly. In addition, it may also reduce the need for machining since metal can be deposited onto a component in thin layers. While there are no limitations such as the level of thickness that can be achieved, brush plating is not as economical as traditional electroplating and electroless methods in high volume.

 

Selective plating is ideal for small low plating services with low volume needs. In addition, while immersion methods are usually more hands off once the process begins, there is a need for more involvement from trained operators for brush plating.

 

Quick Guide to Brush Plating Advantages vs. Immersion

Here’s a quick look at the advantages of brush plating when compared to immersion:

  • Mobile services that can be performed anywhere
  • Faster method for small localized areas
  • Reduces the need for masking
  • Ideal for large parts not suited to immersion baths
  • Reduces high chemical volumes needed for immersion plating
  • Reduces overall utility expenses and requires less electrical power

 

While brush plating offers many advantages, electroplating via immersion bath is also more suitable to large-volume projects and offers thickness not achievable through selective plating methods. Electroplating offers improved surface uniformity, protection from surface abrasion and the ability to build the thickness of the metal substrate. This is ideal for creating adhesion for components that need to be painted as surfaces can be enhanced through electroplating.

 

Depending on the scale or demands of your project, electroplating may be a more economical alternative to brush plating.

 

What Is Selective Plating Used For?

Selective plating is a great service that offers flexibility in a variety of industries for varying types of components. Whether you work in the energy industry, aerospace or manufacturing, selective, brush plating methods can be used to eliminate down time and keep your tools and machinery operational.

 

One of the best uses for brush plating is to eliminate build up on surfaces, which includes essential bearings and bushings. For areas with close tolerances and wall thicknesses, selective plating methods can be used to plate a localized area. In addition, certain types of metal offer unique advantages when it comes to adjoining parts in soldering and welding applications.

 

Selective plating of a metal that offers better physical and mechanical properties at joints can be applied for easier solderability or welding as well as for increased strength at component joints. In some cases, enhanced conductivity might be desirable, but not economical across the entire surface area. Brush plating is often used to add these desired properties for electrical components that rely on precious metals. This can help reduce expenses from more traditional methods and the amount of material used.

 

Some components may also be too large or be oddly shaped, making them unsuitable for an immersion bath. By using brush playing, complex components can be plated quickly and efficiently. Selective plating also offers increased flexibility for the plating of components that are required for critical applications.

 

Common Types of Metal and Alloys Used in Plating

Several different types of metals and complex alloys can be used with electroplating, electroless and selective plating services. Each metal and alloy offers their own chemical, mechanical and physical properties. In some cases, a nice finish brightness and clean aesthetic may be wanted, while other times components will need to be plated to withstand stresses that come from wear and tear.

 

Here is a look at a few of the common metals used in the plating process:

  • Copper. Copper, and its alloys, are some of the most common types of metals used in plating because of their affordability and high electrical conductivity. Copper is often used for the manufacturing of electronic components and circuit boards. Because of its high plating efficiency, and its low cost, copper is one of the least expensive metals used today. In addition, copper’s corrosion resistance is essential to heat transfer applications, and while stainless steel is the most affordable alternative, it only offer 1/30 the thermal conductivity of copper.
  • Zinc. The U.S. pennies you carry around in your pocket are a direct result of zinc plating as zinc is used to coat the thin copper in every single penny. Zinc resists oxidation and corrosion, making it one of the most commonly used metals in automotive components as well as fasteners and nails. It is often used in the galvanizing process through electroplating.
  • Nickel. Electroless nickel plating is very common. The metal is used in a variety of objects we utilize everyday including kitchenware, bathroom and plumbing fixtures, decorations and doorknobs. Nickel and its many alloys are resistant to wear and make it one of the most widely used metals in the plating service industry.
  • Gold. No other metal is quite like gold, which is sought after for its high resistance to oxidation and high electrical conductivity. Unlike copper, though, gold is much rarer and more expensive. Because of its higher material cost, gold plating is often reserved for only small components when it is needed. However, gold plating is often used for the creation of jewelry and for electronic components such as connectors because of its unique mechanical and physical properties.
  • Chromium. Because of its surface finish, chromium is often used for decorative purposes, but it also is advantageous for reduced friction and resistance to corrosion. For decorative pieces in automotive components, chromium is often used for plating, which is done through electroplating in an electrolyte solution.
  • Silver. Similar to chromium, silver is often used for decorative purposes, but like other metals, it offers enhanced electrical conductivity. Silver is less costly than gold, but it still retains a higher material cost than other metals. Silver also does not perform well in certain applications and has mechanical and physical properties that may not hold up in the long term compared to other less expensive metals and alloys.
  • Cadmium. One of the best metals used for plating components that need enhanced paint adhesion is cadmium. Cadmium also offers increased corrosion resistance and provides benefits for long-term wear protection with less material usage. In addition, cadmium can be plated onto almost all conductive metals, making it ideal for numerous industries.

 

Choosing and Troubleshooting Copper Electroplating ...

Excluding the specialty and continuous-strip plating industries, more copper is plated than any other decorative metal except for nickel. There are several reasons for this:

  • Copper is an excellent undercoat for subsequent deposits, since it's a good metal to cover substrate defects that can accelerate corrosion. Buffing copper even improves its ability to be an excellent substrate. Copper, and especially buffed copper, can provide an easy-to-plate, highly level and bright substrate.
  • Copper is among the least expensive metals and is in relatively stable supply. More leveling can be obtained for the cost of the metal electroplated than for any other metal.
  • Copper has a high plating efficiency, and many copper plating processes offer good coverage and throwing power.
  • Copper metal is less environmentally hazardous than many other plated metals, although the EPA limits the discharge of copper and copper plating solutions. The waste treatment processes for copper plating solutions and copper-containing rinse waters are well known and in most cases easy to accomplish. Also, many times the copper metal and even the plating bath can be recycled.
  • Copper’s high electrical conductivity is exceeded only by silver, making it an excellent and inexpensive coating for products such as printed circuit boards. Used as a topcoat on steel wire, it produces high-strength, conductive electrical cable.
  • The percent elongation of most electroplated copper deposits is greater than other electroplated metals. This property helps substrates such as plastic and aluminum withstand thermal expansion without cracking their electrodeposited coatings.

Three basic types of processes are available based upon the complexing system used: alkaline (several modifications of cyanide and non-cyanide); acid (sulfate and fluoborate) and mildly alkaline (pyrophosphate) complexed baths.

Alkaline Cyanide Solutions

Alkaline copper solutions have better throwing power (uniform deposit thickness) than acid copper solutions. However, they cannot be used at as high a current density as acid copper. They are also relatively more difficult to control than acid sulfate solutions. Also, cyanide involves special handling and treatment procedures because of its acute health hazards and waste disposal requirements. But, the procedures are well understood, and, with care, cyanide can be handled safely.

Types of cyanide copper baths. A cyanide copper solution can be used in either rack or barrel plating. The processes can be generally classified as low-efficiency or “strike” processes, medium-efficiency “Rochelle” processes and high-metal, high-efficiency or “high-speed” processes.

A cyanide copper strike bath is typically used to deposit a thin, adherent layer that can completely cover an active metal surface such as zinc or steel prior to further plating operations. Because of the bath’s low plating efficiency, plating time, and thus the deposit’s thickness, is often determined by the time needed to just obtain complete coverage.

The maximum practical deposit thickness is typically in the range of 1.2–2.5 µm (0.05–0.10 mil). The copper strike serves only as a protective layer for further plating, typically with copper or nickel. It also improves adhesion and, in some cases, acts as “insurance” in the pre-plate cycle to obtain adhesion because cyanide can function as a cleaner/activator.

The low-metal and high-cyanide levels in the copper strike are responsible for the low efficiency, but these same properties ensure against a non-adhering immersion layer of copper forming on the surface being plated. This formulation also produces the desired excellent covering and throwing powers.

The Rochelle salt bath is often used for similar purposes. But, it may also be used to provide thicker deposits than can be obtained with cyanide strike baths.

The high-efficiency formulation, with its higher temperature and copper concentration, plates faster and can produce thicker deposits. However, it has lower covering power. Therefore, a cyanide strike must be used prior to this bath when parts with low-current-density areas are plated. The trend is to use cyanide copper baths just for strikes and use other processes such as acid sulfate copper to increase deposit thickness.

Typical Cyanide Copper Baths

Carbonate Chemistry. Carbonate, typically as sodium carbonate, is added to strike and Rochelle salt processes at bath makeup. It controls pH by acting as a buffer and reduces anode polarization.

Carbonate is not added to high-efficiency baths. However, carbonate forms naturally during operation in all cyanide baths. This is a result of the decomposition of free cyanide through hydrolysis and cyanide oxidation at the anode. Carbonate also builds up in the bath by absorption of carbon dioxide from the atmosphere, an effect promoted by air agitation.

If carbonate concentration reaches 75–100 g/L, some should be removed since it reduces the bright plating range. Remove carbonates by precipitation through the addition of calcium (lime) or barium hydroxide to form insoluble calcium or barium salts. Barium cyanide, which also lowers carbonate content, prevents an increase in the hydroxide level of the bath.

Another approach is to chill the sodium-based bath to form sodium carbonate, which is much less soluble at lower temperatures. If the temperature is reduced below 32°F, copper salts also will precipitate. Carbonates cannot be chilled out of a potassium-based bath, since potassium carbonate is too soluble.

For both the precipitation and chilling procedures, use a treatment tank other than the plating tank. This allows the carbonate to settle out before pumping the plating solution through a filter into a cleaned plating tank.

Anodes, current. Use high-purity, oxide-free anodes for high-efficiency decorative copper plating. Lower quality anodes can be used in strike and medium-efficiency Rochelle-salt cyanide-copper plating baths (provided that anode current density is kept low). Copper balls or nuggets in steel baskets, or slab anodes may be used. Intermingle plain steel anodes with the copper anodes to control the buildup of copper in the bath. Keep the anode/cathode ratio between 1:1 and 2:1. It’s also a good idea to bag the anodes (PP, nylon) in order to contain insoluble particles coming from the anodes.

Current interruption and periodic reverse (PR) are beneficial in high-efficiency processes, since they help provide brighter and smoother deposits. Current interruption cycles are typically 10 sec on and one sec off. Typical PR cycles require 10–60 sec direct current followed by 2–20 sec of reverse current. Processes using additives are available that do not require current interruption to produce bright deposits.

Troubleshooting, purification. The best method is to prevent the problem in the first place. Chemical analysis and frequent Hull cell testing will avoid many common problems. Eliminate the source of the problem so that purification or other corrective measures will not need to be conducted as often.

All cyanide copper plating baths, especially the high-efficiency baths, are sensitive to contaminants. Organic residues from buffing compounds, cleaners, tank and rack materials and other organics also can contaminate the bath.

Continuously filtering the plating solution through a filter chamber packed with approximately 0.7 g of activated plating-grade carbon per liter of plating solution (0.1 oz/gal) will remove small amounts of some organics. Change the carbon frequently and properly dispose of the carbon. Once the carbon has been in contact with the cyanide copper electrolyte, it is contaminated with organics and cyanide and must be treated as hazardous.

If a carbon-packed filter is not available or if the organic contamination is too severe, a batch carbon/peroxide treatment may be necessary. Since this is best accomplished in a tank other than the plating tank, chilling the solution to remove carbonates may be done at the same time. Table II gives directions for a typical batch carbon/peroxide treatment.

Batch Carbon/Peroxide Treatment of Cyanide Copper Plating Baths

Even low concentrations of hexavalent chromium, which can be dragged into the bath on the racks, will produce dull and spotty deposits. Chromium can be reduced quickly to its trivalent form and precipitated by the addition of proprietary reducing agents directly to the plating bath. Hexavalent chromium also can be converted to the inactive trivalent state by means of high-current-density electrolysis or by adding sodium hydrosulfite or sodium stannite. There is disputed evidence that trivalent chromium left in the plating bath can be reoxidized by air back to hexavalent chromium. The best procedure is to precipitate the chromium and remove it by filtering.

Zinc contaminants will plate out simultaneously with the copper, causing brittle and brassy looking deposits. Zinc can be removed by dummying the bath at 0.2–0.4 A/dm2. Dummying also removes many other metallic contaminants.

Sulfur and its compounds cause dull, red deposits in low-current-density areas. These usually appear in deposits from new baths as a result of the use of impure cyanides or leaching out contaminants from tank linings, racks and anode bags.

Alkaline, Non-Cyanide Solutions

Concern for worker safety and government regulations on cyanide have made the use of non-cyanide coppers desirable. However, it is questionable if they can replace cyanide processes in all applications, especially for rack plating zinc die castings, due to the formation of a non-adhering immersion copper deposit. A process should only be used after extensive testing on the actual parts to be plated, produced under production conditions. The users should also confirm that the proprietary non-cyanide complexer used to replace cyanide is less hazardous and easier to waste treat than cyanide.

Many non-cyanide copper processes operate between 54–65°C (130–150°F) with air agitation. A typical bath formulation contains 11g/L of copper metal. The pH is around 9.0, while cyanide copper solutions have a pH of at least 11.0. The anode-to-cathode ratio is 2:1, with the same anodes used in cyanide copper solutions.

Recommended article:
Pipe Straightening Machine Manufacturers

For more information, please visit Rack Plating Equipment.


Ultimate Guide to Industrial Steam Generators: FAQs Answered!
Buy Two-Stage Screw Air Compressors at Good Price

Analysis and routine additions of the complexer are all that are typically needed to maintain the bath. However, the removal of metallic impurities might be a major problem with some processes.

Acid Copper Solutions

Acid copper baths are simple formulations, containing copper ions, additives and either sulfate or fluoborate ions along with the corresponding acids. Because of their acidity, they cannot be plated directly onto active metals, such as zinc die castings and steel, for they will produce non-adhering immersion deposits.

The chemical cost of acid copper baths is low, and they can have a wide range in composition. When compared with cyanide and alkaline non-cyanide baths, their effluent control is simpler, they are easier to control and they are more stable. Their anode and cathode efficiencies are high, close to or equal to 100%. With high agitation they can tolerate high current densities.

However, because of their low cathode polarization, the acid baths do not have throwing power as good as that of alkaline solutions, making them poor strike baths.

Chemistry

Typical acid copper sulfate baths

Table III shows the chemical makeup and operating conditions of typical acid copper sulfate baths. General purpose baths are used for decorative plating, while high-throw and high-speed baths are for special applications such as printed circuit board and strip plating. High-throw baths are formulated to plate more copper in the very low current density holes and less on the surface of circuit boards than other acid copper processes. A high-speed bath can plate about twice as fast as conventional baths while retaining all the desired deposit properties.

The concentration of copper sulfate helps determine the properties of the baths. At higher concentrations, the resistivity of the bath is greater, and the anode and cathode polarization are slightly reduced. At lower copper sulfate concentrations, throwing power increases. A concentration of less than 60 g/L of copper sulfate decreases cathode efficiency. The solubility of copper sulfate decreases with increasing sulfuric acid concentration.

Sulfuric acid gives the bath its high conductivity, reduces anode and cathode polarization and prevents precipitation of basic copper salts. A practical minimum sulfuric acid concentration is about 45 g/L.

Agitation, anodes. To ensure brightness and to prevent high-current-density burning, agitation of acid copper baths is essential. Air agitation from an oil-free blower is best for decorative copper plating. For PC boards, mechanical agitation, in which the PC board’s movement forces solution through the board’s holes, is good to obtain maximum throwing power. For high-speed copper plating at high current density, high-velocity solution flow and/or part movement, perpendicular to the cathode, has been successful.

A necessary black cupric oxide film forms on the anodes. If it is disturbed, such as with excessive high anode current density, brightener consumption and roughness will increase, deposit ductility will decrease and leveling of deposits will be reduced. If the anodes have either a pink or a light gray appearance, too low anode phosphorus content or electrical problems may be the cause. Low-current-density electrolysis, starting at 0.5 and building up to 2.5 A/dm2 (5–25 asf), should develop the desired film if the correct anode material is used.

Contamination. Nickel, cobalt, chromium and iron will not readily co-deposit with copper but will reduce the solution’s conductivity when a total of about 1,000 ppm are present. These metals cannot be removed.

Iron will also cause the copper concentration in the bath to increase by a reaction with the anode during idle periods.

Calcium and lead will precipitate as sulfates and cause roughness if not removed, but they do not affect the deposit.

Tin can co-deposit to cause rough dark deposits if present above 60 ppm. Lead and tin are usually introduced into the bath by carry-over on solder plated racks. Stripping the racks after solder plating will minimize this.

Medium-current dummying at 1.5–2.0 A/dm2 (15–20 asf) will remove tin.

Antimony and bismuth will co-deposit if they are in the 20–100 ppm range, causing brittle deposits. Antimony is usually introduced as an impurity in the copper anodes. It can be removed by low-current-density dummying. Aluminum in amounts greater than 50 ppm may cause dullness in recesses.

Troubleshooting, purification. Acid copper sulfate baths are easy to maintain. Use quantitative analysis to control copper, sulfuric acid and chloride. Add proprietary addition agents, which control brightness, ductility, and leveling, on the basis of amp-hr. You can also regulate their addition by using Hull cells and a copper analysis.

Even though acid copper baths are very tolerant to contamination, they must be purified occasionally. Organic contamination, recognized by a green tint to the solution, is probably the most common, since it is easily introduced into the bath from cleaners, oils, greases, brightener-breakdown products and brightener overloads. Most proprietary systems can tolerate an overdose of additives for a short time but if overdosing continues a light carbon treatment might be necessary.

Pack the filter with activated carbon on non-cellulose filter aid and circulate the solution through the carbon for about three or four turnovers. This should remove enough organics to permit the bath to continue to operate satisfactorily.

Typical carbon/hydrogen peroxide treatment for acid copper

Most acid copper baths will eventually require a carbon/hydrogen peroxide treatment to remove organics that cannot be removed by a light carbon treatment. The organic contaminants will cause the bath to have a narrow bright plating range and to produce a dull and burned copper deposit.

Acid Fluoborate Copper Processes
Copper fluoborate is much more soluble than copper sulfate. Therefore, for high-current-density and high-speed processes, the copper ion concentration can be more than double that obtainable in sulfate baths. The fluoborate ion also helps provide solubility and conductivity. But, when compared with sulfate baths, the fluoborate bath has less throwing power.

The copper sulfate bath is more widely used than the fluoborate because it is less expensive. Also, many more additive systems have been developed for copper-sulfate formulations. Copper fluoborate baths are more hazardous to use and harder to waste treat than sulfate baths. And, as with the sulfate baths, the fluoborate solutions are very corrosive, making careful design of plating equipment important.

Chemistry of copper fluoborate baths. If the fluoboric acid concentration is too low (pH above 1.7), the deposit may be dull, dark and brittle. Add boric acid to stabilize the bath and to prevent the decomposition of the fluoborate to fluoride. The anode film and its care in a fluoborate bath are very similar to the requirements described for the copper sulfate bath.

Contamination, purification. Lead is the only metallic impurity known to interfere with the deposition of ductile copper from a fluoborate bath. Addition of small amounts of sulfuric acid will remove the lead by precipitation.

Organic impurities originating from the decomposition of addition agents, solution drag-in or the leaching of tank linings and racks can embrittle the copper deposit and affect the deposit’s appearance and mechanical properties.

A batch carbon treatment followed by filtration or continuous carbon filtration will remove most organics from the bath.

Pyrophosphate Copper

The main use of pyro copper is plating of printed circuit boards. The bath has good throwing power, obtaining surface-to-hole ratios of 1:1 on many PC boards. Some federal agencies specify pyro copper where ductility of the deposit is very important. It is also used for general plating, electroforming and plating on plastics. Even here, though, sulfate acid copper has the largest market share.

Typical pyrophosphate copper plating baths

Pyrophosphate copper baths are mildly alkaline, making them less corrosive than acid baths. They are essentially non-toxic. They are easy to waste treat, but the phosphate ion is considered a controlled pollutant in some regions. In these cases, controlled waste treatment is required.

Specially formulated pyrophosphate baths can be used for copper strikes on steel and zincated aluminum. Immersion coatings may form on zinc die castings thus cyanide copper strikes are typically used.

Chemistry of pyrophosphate paths. Copper pyrophosphate, Cu2P2O7•3H2O, dissolved in potassium pyrophosphate, K4P2O7 solution, forms the stable complex ion Cu(P2O7)26- from which copper plates. Potassium is used instead of sodium because it is more soluble and has a higher electrical conductivity. Any pyrophosphate in excess of this ratio is called “free” pyrophosphate. Free pyrophosphate is essential for the operation of the bath, providing conductivity and anode corrosion.

The presence of nitrate increases maximum allowable current density and reduces cathode polarization. The use of ammonium nitrate improves the quality of the deposit over that obtained if potassium nitrate is used. Ammonium is added on a regular basis to produce uniform and lustrous deposits and to improve anode corrosion. Excess ammonium can cause copper (I) to form, which hinders adhesion, but ammonium is easily lost by evaporation. Oxalate is a buffer.

Operation. Copper pyrophosphate baths are difficult to control. They require more control and maintenance than cyanide and acid-copper baths.

Orthophosphate. Orthophosphate (HPO42-), which is formed by the hydrolysis of pyrophosphate, promotes anode corrosion and acts as a buffer. At about 100 g/L of orthophosphate, the conductivity and bright plating range of the bath decrease and it produces banded deposits.

A pH below 7.0, a high P2O7:Cu ratio and a bath temperature greater than 60°C (140°F) will increase the formation of orthophosphate. Orthophosphate cannot be chemically removed from pyrophosphate solutions. Therefore, some or all of the bath must be discarded to reduce its concentration.

For printed-circuit-board plating, orthophosphate concentration should not exceed 40-60 g/L. The bath will lose its throwing power and the deposit will be less ductile.

pH. A low pH will precipitate copper pyrophosphate and decrease the throwing power of the bath. A high pH will precipitate copper hydroxide, and anode corrosion will decrease. Potassium hydroxide and pyrophosphoric acid are used for pH adjustments.

Current density. The cathode current den-sity is a function of operating temperature and agitation. The typical range is between 1–9 A/dm2 (10–90 asf). Throwing power and current efficiency drop sharply with increasing current density.

Anode current density is fairly critical and should be kept between 2–4 A/dm2 (20–40 asf). If it is too high, an insoluble oxide tends to form. If too low, the anode efficiency exceeds 100%, causing a buildup of copper in the bath. Permissible current density can be increased by ultrasonic agitation. Current interruption, current reversal or increasing the copper concentration also will increase the permissible current density range.

Agitation. Agitate vigorously to maintain deposit brightness and uniformity. Without agitation, the electrodeposit is brownish and the operating current density is drastically lowered. Air, eductors, mechanical or ultrasonic agitation can be used alone or in combination.

Contamination, purification. The key to successful operation of a copper pyrophosphate solution is careful control of the additives. The solutions are considerably more sensitive than acid copper solutions to organic contamination such as oils, cleaning and buffing compounds, organics leached out of PC boards and breakdown products of organic addition agents.

Organic, cyanide and lead contamination can cause dull, streaked deposits and produce a lower effective current density range. Filtering through sulfur-free plating-grade carbon will remove most organic contamination. Treating with hydrogen peroxide or potassium permanganate before carbon treatment will remove cyanide and severe organic contamination.

Dummying will remove lead and copper. Even on solution makeup, the bath should be dummied at 0.3–0.5 A/dm2 (3–5 asf) to remove metallic impurities. Sodium bisulfite will reduce hexavalent chromium and allow precipitation as chromium hydroxide. Zinc will produce brassy looking deposits and should be dummied out at medium-to-low current density.

Troubleshooting. Chemical analysis for copper, pyrophosphate and ammonia is the starting point for good bath operation. The Hull cell can be used to evaluate additives.

RELATED CONTENT

  • Tin-Zinc Alloy Electroplating and Its Corrosion Behavior

     An NASF/AESF Foundation Research Program Retrospective 

  • NASF/AESF Foundation Research Project #120: Electrochemical Destruction of Perfluorooctanesulfonate in Electroplating Wastewaters – 7th & 8th Quarter Report

    This NASF-AESF Foundation research project report covers the seventh and eighth quarters of project work (October 2021-March 2022) at the University of Illinois at Chicago.  The major activities reported are: (1) to investigate 6:2 FTS oxidation, a common replacement compound for PFOS in the electroplating industry, and (2) PFAS oxidation in both a wastewater sample procured from an electroplating facility and in synthetic solutions. 

  • The Importance of Strike Solutions

    Electroplating strikes are used to improve adhesion and create a foundation for subsequent layers when plating. In this helpful article, Adam Blakeley of MacDermid Enthone offers an insightful guide to understanding electroplating strikes.

    Want more information on Multi-layer plating machine? Feel free to contact us.

80

0

0

Comments

0/2000

All Comments (0)

Guest Posts

If you are interested in sending in a Guest Blogger Submission,welcome to write for us!

Your Name:(required)

Your Email:(required)

Subject:

Your Message:(required)