Login

Your Name:(required)

Your Password:(required)

Join Us

Your Name:(required)

Your Email:(required)

Your Message :

Your Position: Home - Other Machinery & Industry Equipment - A brief history of pyrolysis

A brief history of pyrolysis

Author: Steve

Sep. 23, 2024

A brief history of pyrolysis

   Pyrolysis of wood is one of the first chemical processes adopted by humans. From the 12th century onwards, it was widely used in Russia to produce pine resin (used for tarring wooden ships and impregnating ropes), a process called tar-distillation.

For more information, please visit our website.

It is believed that Sweden pioneered the use of pyrolysis technology on an industrial scale in the 16th century. The Swedes used the technology of impregnating shipboard wood with tanning pine resin from a simple pyrolysis process. The copper vat was filled with softwood logs and sealed so that no air could enter the vat. The vat was heated over an open flame to a temperature of 400°C-500°C, with oily resins accumulating at the bottom and draining through a hole in the bottom. With the development of metallurgy, there was another industry based on the technology of pyrolysis of wood &#; coal burning. When wood was burnt without air access, charcoal was produced.

.

Introduction to Pyrolysis as a Thermo-Chemical ...

  1. Midilli A, Dincer I, Ay M. Green energy strategies for sustainable development. Energy Policy. ;34:&#;33. https://doi.org/10./j.enpol..08.003.

  2. Asif M, Muneer T. Energy supply, its demand and security issues for developed and emerging economies. Renew Sust Energ Rev. ;111:&#;413. https://doi.org/10./j.rser..12.004.

  3. Enerdata. (). Global Energy statistics year book . https://yearbook.enerdata.net/total-energy/world-consumption-statistics.html. Accessed 20 Jan

  4. World Resources Institute. (). Greenhouse gas emissions over 165 years, . https://www.wri.org/tags/ghg-emissions. Accessed 20 Jan

  5. Atilgan B, Azapagic A. Life cycle environmental impacts of electricity from fossil fuels in Turkey. J Clean Prod. ;106:555&#;64. https://doi.org/10./j.jclepro..07.046.

  6. Tilman D, Hill J, Lehman C. Carbon-negative biofuels from low-input high-diversity grassland biomass. Science. ;314:&#;600. https://doi.org/10./science..

  7. Luo S, Liu C, Xiao B, Xiao L. A novel biomass pulverization technology. Renew Energy. ;36:578&#;82. https://doi.org/10./j.renene..08.003.

  8. Sharma A, Pareek V, Zhang D. Biomass pyrolysis-A review of modelling, process parameters and catalytic studies. Renew Sust Energ Rev. ;50:&#;96. https://doi.org/10./j.rser..04.193.

  9. Blasi CD. Modeling chemical and physical processes of wood and biomass pyrolysis. Prog Energy Combust Sci. ;34:47&#;90. https://doi.org/10./j.pecs..12.001.

  10. Simone B, Michael S. Biochemical conversion processes of lignocellulosic biomass to fuels and chemicals &#; a review. CHIMIA Int J Chem. ;69:572&#;81. https://doi.org/10./chimia..572.

  11. Demirbas A, Arin G. An overview of biomass pyrolysis. Energy Sour. ;24:471&#;82. https://doi.org/10./.

  12. Demirbas A. Combustion characteristics of different biomass fuels. Prog Energy Combust Sci. ;30:219&#;30. https://doi.org/10./j.pecs..10.004.

  13. Ruiz JA, Juárez MC, Morales MP, Muñoz P, Mendívil MA. Biomass gasification for electricity generation: review of current technology barriers. Renewa Sustain Energy Rev. ;18:174&#;83. https://doi.org/10./j.rser..10.021.

  14. Yaman S. Pyrolysis of biomass to produce fuels and chemical feedstocks. Energy Convers Manag. ;45:651&#;71. https://doi.org/10./S-(03)-8.

  15. Zhang LT, Xu CB, Champagne P. Overview of recent advances in thermo-chemical conversion of biomass. Energy Convers Manag. ;51:969&#;82. https://doi.org/10./j.enconman..11.038.

  16. Liu H, Wang H, Karim AM, Sun J, Wang Y. Catalytic fast pyrolysis of lignocellulosic biomass. Chem Soc Rev. ;43:&#;623. https://doi.org/10./C3CS60.

  17. Ringer M, Putsche V, Scahill J. Large-scale pyrolysis oil production: a technology assessment and economic analysis. Golden, CO: National Renewable Energy Laboratory; .

  18. Paudel SR, Banjara SP, Choi OK, Park KY, Kim YM, Lee JW. Pretreatment of agricultural biomass for anaerobic digestion: current state and challenge. Bioresour Technol. ;245:&#;205. https://doi.org/10./j.biortech..08.182.

  19. Wang S, Luo ZY. Pyrolysis of biomass components. Beijing, CN: Beijing Science Press; . p. 4.

  20. Chen Y, Wu Y, Hua D, Li C, Harold MP, Wang J, Yang M. Thermochemical conversion of low-lipid microalgae for the production of liquid fuels: challenges and opportunities. RSC Adv. ;5:&#;701. https://doi.org/10./C4RA13.

  21. Paudel SR, Banjara SP, Choi OK, Park KY, Kim YM, Lee JW. Pretreatment of agricultural biomass for anaerobic digestion: current state and challenges. Bioresour Technol. ;245:&#;205. https://doi.org/10./j.biortech..08.182.

  22. Wang S, Dai G, Yang H, Luo Z. Lignocellulosic biomass pyrolysis mechanism: a state-of-the-art review. Prog Energy Combust Sci. ;62:33&#;86. https://doi.org/10./j.pecs..05.004.

  23. Rasi S, Kilpeläinen P, Rasa K, Korpinen R, Raitanen J-E, Vainio M, Kitunen V, Pulkkinen H, Jyske T. Cascade processing of softwood bark with hot water extraction, pyrolysis and anaerobic digestion. Bioresour Technol. ;292:&#;9. https://doi.org/10./j.biortech...

  24. Huang YB, Fu Y. Hydrolysis of cellulose to glucose by solid acid catalysts. Green Chem. ;15:&#;111. https://doi.org/10./C3GCG.

  25. Peng F, Peng P, Xu F, Sun RC. Fractional purification and bioconversion of hemicelluloses. Biotechnol Adv. ;30:879&#;903. https://doi.org/10./j.biotechadv..01.018.

  26. Li C, Zhao X, Wang A, Huber GW, Zhang T. Catalytic transformation of lignin for the production of chemicals and fuels. Chem Rev. ;115:&#;624. https://doi.org/10./acs.chemrev.5b.

  27. Zakzeski J, Bruijnincx PC, Jongerius AL, Weckhuysen BM. The catalytic valorization of lignin for the production of renewable chemicals. Chem Rev. ;110:&#;9. https://doi.org/10./cru.

  28. Babich IV, Hulst MV, Lefferts L, Moulijn JA, Connor PO, Seshan K. Catalytic pyrolysis of microalgae to high-quality liquid bio-fuels. Biomass Bioenergy. ;35:&#;207. https://doi.org/10./j.biombioe..04.043.

  29. Silva LS, González DL, Minguillan AMG, Valverde JL. Pyrolysis, combustion and gasification characteristics of Nannochloropsis gaditana microalgae. Bioresour Technol. ;130:321&#;31. https://doi.org/10./j.biortech..12.002.

  30. Ho SH, Chen CY, Lee DJ, Chang JS. Perspectives on microalgal CO2-emission mitigation systems&#;a review. Biotechnol Adv. ;29:189&#;98. https://doi.org/10./j.biotechadv..11.001.

  31. Chen CY, Zhao XQ, Yen HW, Ho SH, Cheng CL, Lee DJ, Bai FW, Chang JS. Microalgae-based carbohydrates for biofuel production. Biochem Eng J. ;78:1&#;10. https://doi.org/10./j.bej..03.006.

  32. Maher KD, Bressler DC. Pyrolysis of triglyceride materials for the production of renewable fuels and chemicals. Bioresour Technol. ;98:&#;68. https://doi.org/10./j.biortech..10.025.

  33. Demirbas A. Competitive liquid biofuels from biomass. Appl Energy. ;88:17&#;28. https://doi.org/10./j.apenergy..07.016.

  34. Bridgwater AV. Review of fast pyrolysis of biomass and product upgrading. Biomass Bioenergy. ;28:68&#;94. https://doi.org/10./j.biombioe..01.048.

  35. Parthasarathy P, Sheeba KN. Combined slow pyrolysis and steam gasification of biomass for hydrogen generation - a review. Int J Energy Res. ;29:147&#;64. https://doi.org/10./er..

  36. Brown TR, Wright MM, Robert C, Brown RC. Estimating profi tability of two biochar production scenarios: slow pyrolysis vs fast pyrolysis. Biofuel Bioprod Biorefin. ;5:54&#;68. https://doi.org/10./bbb.254.

  37. Funke A, Morgano MT, Dahmen N, Leibold H. Experimental comparison of two bench scale units for fast and intermediate pyrolysis. J Anal Appl Pyrolysis. ;124:504&#;14. https://doi.org/10./j.jaap..12.033.

  38. Yang Y, Wang J, Chong K, Bridgwater AV. A techno-economic analysis of energy recovery from organic fraction of municipal solid waste (MSW) by an integrated intermediate pyrolysis and combined heat and power (CHP) plant. Energy Convers Manag. ;174:406&#;16. https://doi.org/10./j.enconman..08.033.

  39. Yang Y, Brammer JG, Wright DG, Scott JA, Serrano C, Bridgwater AV. Combined heat and power from the intermediate pyrolysis of biomass materials: performance, economics and environmental impact. Appl Energy. ;191:639&#;52. https://doi.org/10./j.apenergy..02.004.

  40. Ahmed A, Bakar MSA, Azad AK, Sukri RS, Phusunti N. Intermediate pyrolysis of Acacia cincinnata and Acacia holosericea species for bio-oil and biochar production. Energy Convers Manag. ;176:393&#;408. https://doi.org/10./j.enconman..09.041.

  41. Perkins G, Perkins T, Perkins M. Process development status of fast pyrolysis technologies for the manufacture of renewable transport fuels from biomass. Renew Sust Energ Rev. ;90:282&#;315. https://doi.org/10./j.rser..03.048.

  42. Dabros TMH, Stummann MZ, Høj M, Jensen PA, Grunwaldt JD, Gabrielsen J, Mortensen PM, Jensen AD. Transportation fuels from biomass fast pyrolysis, catalytic hydrodeoxygenation, and catalytic fast hydropyrolysis. Prog Energy Combust. Sci. ;68:268&#;309. https://doi.org/10./j.pecs..05.002.

  43. Dickerson T, Soria J. Catalytic fast pyrolysis: a review. Energies. ;6:514&#;38. https://doi.org/10./en.

  44. Ruddy DA, Schaidle JA, Ferrell JR III, Wang J, Moens L, Hensley JE. Recent advances in heterogeneous catalysts for bio-oil upgrading via &#;ex situ catalytic fast pyrolysis&#;: catalyst development through the study of model compounds. Green Chem. ;16:454&#;90. https://doi.org/10./C3GCC.

  45. Maliutina K, Tahmasebi A, Yu J, Saltykov SN. Comparative study on flash pyrolysis characteristics of microalgal and lignocellulosic biomass in entrained-flow reactor. Energy Convers Manag. ;151:426&#;38. https://doi.org/10./j.enconman..09.013.

  46. Nzihou A, Stanmore B, Lyczko N. The catalytic effect of inherent and adsorbed metals on the fast/flash pyrolysis of biomass: a review. Energy. ;170:326&#;37. https://doi.org/10./j.energy..12.174.

  47. Ribeiro JMC, Godina R, Matias JCO, Nunes LJR. Future perspectives of biomass torrefaction: review of the current state-of-the-art and research development. Sustainability. ;10:&#;40. https://doi.org/10./su.

  48. Dai L, Wang Y, Liu Y, Ruan R, He C, Yu Z, Jiang L, Zeng Z, Tian X. Integrated process of lignocellulosic biomass torrefaction and pyrolysis for upgrading bio-oil production: a state-of-the-art review. Renew Sustain Energy Rev. ;107:20&#;36. https://doi.org/10./j.rser..02.015.

  49. Barskov S, Zappi M, Buchireddy P, Dufreche S, Guillory J, Gang D, Hernandez R, Bajpai R, Baudier J, Cooper R, Sharp R. Torrefaction of biomass: a review of production methods for biocoal from cultured and waste lignocellulosic feedstocks. Renew Energy. ;142:624&#;42. https://doi.org/10./j.renene..04.068.

  50. Sikarwar VS, Zhao M, Fennell PS, Shah N, Anthony EJ. Progress in biofuel production from gasification. Progr Energy Combust Sci. ;61:189&#;248. https://doi.org/10./j.pecs..04.001.

  51. Asadullah M. Biomass gasification gas cleaning for downstream applications: a comparative critical review. Renew Sustain Energy Rev. ;40:118&#;32. https://doi.org/10./j.rser..07.132.

  52. Sansaniwal SK, Pal K, Rosen MA, Tyagi SK. Recent advances in the development of biomass gasification technology: a comprehensive review. Renew Sust Energ Rev. ;72:363&#;84. https://doi.org/10./j.rser..01.038.

  53. Widjaya ER, Chen G, Bowtell L, Hills C. Gasification of non-woody biomass: a literature review. Renew Sustain Energy Rev. ;89:184&#;93. https://doi.org/10./j.rser..03.023.

  54. Molino A, Larocca V, Chianese S, Musmarra D. Biofuels production by biomass gasification: a review. Energies. ;11:811&#;42. https://doi.org/10./en.

  55. Kan T, Strezov V, Evans TJ. Lignocellulosic biomass pyrolysis: a review of product properties and effects of pyrolysis parameters. Renew Sust Energ Rev. ;57:&#;40. https://doi.org/10./j.rser..12.185.

  56. Uddin MN, Techato K, Taweekun J, Rahman MM, Rasul MG, Mahlia TMI, Ashrafur SM. An overview of recent developments in biomass pyrolysis technologies. Energies. ;11:. https://doi.org/10./en.

  57. Manyà JJ. Pyrolysis for biochar purposes: a review to establish current knowledge gaps and research needs. Environ Sci Technol. ;46:&#;54. https://doi.org/10./esg.

  58. Lee J, Yang X, Cho SH, Kim JK, Lee SS, Tsang DCW, Ok YS, Kwon EE. Pyrolysis process of agricultural waste using CO2 for waste management, energy recovery, and biochar fabrication. Appl Energy. ;185:214&#;22. https://doi.org/10./j.apenergy..10.092.

  59. Kambo HS, Dutta A. A comparative review of biochar and hydrochar in terms of production, physico-chemical properties and applications. Renew Sust Energ Rev. ;45:359&#;78. https://doi.org/10./j.rser..01.050.

  60. Qian K, Kumar A, Zhang H, Bellmer D. Recent advances in utilization of biochar. Renew Sust Energ Rev. ;42:&#;64. https://doi.org/10./j.rser..10.074.

  61. Liu Z, Quek A, Hoekman SK, Balasubramanian R. Production of solid biochar fuel from waste biomass by hydrothermal carbonization. Fuel. ;103:943&#;9. https://doi.org/10./j.fuel..07.069.

  62. Gratuito MKB, Panyathanmaporn T, Chumnanklang PA, Sirinuntawittaya N, Dutta A. Production of activated carbon from coconut shell: optimization using response surface methodology. Bioresour Technol. ;99:&#;95. https://doi.org/10./j.biortech..09.042.

  63. Yao Z, You S, Ge T, Wang C. Biomass gasification for syngas and biochar co-production: energy application and economic evaluation. Appl Energy. ;209:43&#;55. https://doi.org/10./j.apenergy..10.077.

  64. Jha P, Biswas A, Lakaria B, Rao AS. Biochar in agriculture&#;prospects and related implications. Curr Sci. ;99:&#;25.. https://www.jstor.org/stable/

  65. Titirici MM, White RJ, Falco C, Sevilla M. Black perspectives for a green future: hydrothermal carbons for environment protection and energy storage. Energy Environ Sci. ;5:&#;822. https://doi.org/10./C2EEA.

    Recommended article:
    4 Tips to Select the Right 20 Ton Oil Distillation Plant
    Unlocking Profits: 20 Ton Oil Distillation Plant Benefits

    Sihai Energy Product Page

  66. Mani S, Kastner JR, Juneja A. Catalytic decomposition of toluene using a biomass derived catalyst. Fuel Process Technol. ;114:118&#;25. https://doi.org/10./j.fuproc..03.015.

  67. He N, Bi X, Liu S, Hu Z, Guo X, Luo S, Yang F. Syngas production from pyrolysis of municipal solid waste (MSW) with dolomite as downstream catalysts. J Anal Appl Pyrolysis. ;87:181&#;7. https://doi.org/10./j.jaap..11.005.

  68. Baratieri M, Baggio P, Bosio B, Grigiante M, Longo GA. The use of biomass syngas in IC engines and CCGT plants: a comparative analysis. Appl Thermal Eng. ;29:&#;18. https://doi.org/10./j.applthermaleng..05.003.

  69. Hagos FY, Aziz RA, Sulaiman SA. Trends of syngas as a fuel in internal combustion engines. Adv Mechan Eng. ;:. https://doi.org/10.//.

  70. Siedlecki M, Jong WD, Verkooijen AHM. Fluidized bed gasification as a mature and reliable technology for the production of bio-syngas and applied in the production of liquid transportation fuels-A review. Energies. ;4:389&#;434. https://doi.org/10./en.

  71. Abnisa F, Daud WMAW, Husin WNW, Sahu JN. Utilization possibilities of palm shell as a source of biomass energy in Malaysia by producing bio-oil in pyrolysis process. Biomass Bioenergy. ;35:&#;72. https://doi.org/10./j.biombioe..01.033.

  72. Xiu S, Shahbazi A. Bio-oil production and upgrading research: a review. Renew Sust Energ Rev. ;16:&#;14. https://doi.org/10./j.rser..04.028.

  73. Wang Z, Lu Q, Zhu X, Zhang Y. Catalytic fast pyrolysis of cellulose to prepare levoglucosenone using sulfated zirconia. ChemSusChem. ;4:79&#;84.

  74. Solantausta Y, Nylund NO, Westerholm M, Koljonen T, Oasmaa A. Wood pyrolysis oil as fuel in a diesel power plant. Bioresour Technol. ;46:177&#;88. https://doi.org/10./cssc..

  75. Lu Q, Li WZ, Zhu XF. Overview of fuel properties of biomass fast pyrolysis oils. Energy Convers Manag. ;50:&#;83. https://doi.org/10./-(93)-I.

  76. Zhang Q, Chang J, Wang T, Xu Y. Review of biomass pyrolysis oil properties and upgrading research. Energy Convers Manag. ;48:87&#;92. https://doi.org/10./j.enconman..05.010.

  77. Oasmaa A, Czernik S. Fuel oil quality of biomass pyrolysis oils-state of the art for the end-users. Energy Fuel. ;13:914&#;21. https://doi.org/10./efb.

  78. Guo Y, Wang Y, Wei F. Research progress in biomass flash pyrolysis technology for liquids production. Chem Ind Eng Progr. ;8:13&#;7.

  79. Sipilaè K, Kuoppala E, Fagernaès L. Characterization of biomass-based flash pyrolysis oils. Biomass Bioenergy. ;14:103&#;13. https://doi.org/10./S-(97)-1.

  80. He R, Ye XP, Harte F, English B. Effects of high-pressure homogenization on physicochemical properties and storage stability of switchgrass bio-oil. Fuel Process Technol. ;90:415&#;21. https://doi.org/10./j.fuproc..11.003.

  81. Mettler MS, Vlachos DG, Dauenhauer PJ. Top ten fundamental challenges of biomass pyrolysis for biofuels. Energy Environ Sci. ;5:&#;809. https://doi.org/10./C2EEE.

  82. White JE, Catallo WJ, Legendre BL. Biomass pyrolysis kinetics: a comparative critical review with relevant agricultural residue case studies. J Anal Appl Pyrolysis. ;91:1&#;33. https://doi.org/10./j.jaap..01.004.

  83. Collard FX, Blin J. A review on pyrolysis of biomass constituents: mechanisms and composition of the products obtained from the conversion of cellulose, hemicelluloses and lignin. Renew Sust Energ Rev. ;38:594&#;608. https://doi.org/10./j.rser..06.013.

  84. Mahinpey N, Gomez A. Review of gasification fundamentals and new findings: reactors, feedstock, and kinetic studies. Kinetic study on pyrolysis of biomass components: a critical review. Chem Eng Sci. ;148:14&#;3. https://doi.org/10./j.ces..03.037.

  85. Liu Q, Wang S, Zheng Y, Luo Z, Cen K. Mechanism study of wood lignin pyrolysis by using TG&#;FTIR analysis. J Anal Appl Pyrol. ;82:170&#;7. https://doi.org/10./j.jaap..03.007.

  86. Lv G, Wu S. Analytical pyrolysis studies of corn stalk and its three main components by TG-MS and Py-GC/MS. J Anal Appl Pyrolysis. ;97:11&#;8. https://doi.org/10./j.jaap..04.010.

  87. Zhang H, Deng S. Density functional theory investigation of gasification mechanism of a lignin dimer with β-5 linkage. Renew Energy. ;115:937&#;45. https://doi.org/10./j.renene..08.095.

  88. Choi YS, Singh R, Zhang J, Balasubramanian G, Sturgeon MR, Katahira K, Chupka G, Beckham GT, Shanks BH. Pyrolysis reaction networks for lignin model compounds: unraveling thermal deconstruction of β-O-4 and α-O-4 compounds. Green Chem. ;18:&#;73. https://doi.org/10./C5GCA.

  89. Van de Velden M, Baeyens J, Brems A, Janssens B, Dewil R. Fundamentals, kinetics and endothermicity of the biomass pyrolysis reaction. Renew Energy. ;35:232&#;42. https://doi.org/10./j.renene..04.019.

  90. Mettler MS, Mushrif SH, Paulsen AD, Javadekar AD, Vlachos DG, Dauenhauer PJ. Revealing pyrolysis chemistry for biofuels production: conversion of cellulose to furans and small oxygenates. Energy Environ Sci. ;5:&#;24. https://doi.org/10./C1EEC.

  91. Shen D, Gu S. The mechanism for thermal decomposition of cellulose and its main products. Bioresour Technol. ;100:&#;504. https://doi.org/10./j.biortech..06.095.

  92. Lu Q, Zhang Y, Dong C, Yang Y, Yu H. The mechanism for the formation of levoglucosenone during pyrolysis of β-d-glucopyranose and cellobiose: a density functional theory study. J Anal Appl Pyrolysis. ;110:34&#;43. https://doi.org/10./j.jaap..08.002.

  93. Assary RS, Redfern PC, Greeley J, Curtiss LA. Mechanistic insights into the decomposition of fructose to hydroxy methyl furfural in neutral and acidic environments using high-level quantum chemical methods. J Phys Chem B. ;115:&#;9. https://doi.org/10./jp.

  94. Lu Q, Tian H, Hu B, Jiang X, Dong C, Yang Y. Pyrolysis mechanism of holocellulose-based monosaccharides: the formation of hydroxyacetaldehyde. J Anal Appl Pyrolysis. ;120:15&#;26. https://doi.org/10./j.jaap..04.003.

  95. Wang S, Ru B, Lin H, Luo Z. Degradation mechanism of monosaccharides and xylan under pyrolytic conditions with theoretic modeling on the energy profiles. Bioresour Technol. ;143:378&#;83. https://doi.org/10./j.biortech..06.026.

  96. Patwardhan PR, Brown RC, Shanks BH. Product distribution from the fast pyrolysis of hemicelluloses. ChemSusChem. ;4:636&#;43. https://doi.org/10./cssc..

  97. Janković B. The comparative kinetic analysis of Acetocell and Lignoboost® lignin pyrolysis: the estimation of the distributed reactivity models. Bioresour Technol. ;102:&#;71. https://doi.org/10./j.biortech..07.080.

  98. Chen L, Ye X, Luo F, Shao J, Lu Q, Fang Y, Dong C, Yang Y. Pyrolysis mechanism of β O 4 type lignin model dimer. J Anal Appl Pyrol. ;115:103&#;11. https://doi.org/10./j.jaap..07.009.

  99. Faravelli T, Frassoldati A, Migliavacca G, Ranzi E. Detailed kinetic modeling of the thermal degradation of lignins. Biomass Bioenergy. ;34:290&#;301. https://doi.org/10./j.biombioe..10.018.

  100. Tröger N, Richter D, Stahl R. Effect of feedstock composition on product yields and energy recovery rates of fast pyrolysis products from different straw types. J Anal Appl Pyrolysis. ;100:158&#;65. https://doi.org/10./j.jaap..12.012.

  101. Di Blasi C, Branca C. Kinetics of primary product formation from wood pyrolysis. Ind Eng Chem Res. ;40:47&#;56. https://doi.org/10./iee.

  102. Wang K, Brown RC, Homsy S, Martinez L, Sidhu SS. Fast pyrolysis of microalgae remnants in a fluidized bed reactor for bio-oil and biochar production. Bioresour Technol. ;127:494&#;9. https://doi.org/10./j.biortech..08.016.

  103. Guo X, Wang S, Wang K, Liu Q, Luo Z. Influence of extractives on mechanism of biomass pyrolysis. J Fuel Chem Technol. ;38:42&#;6. https://doi.org/10./S-(10)-9.

  104. Nik-Azar M, Hajaligol MR, Sohrabi M, Dabir B. Mineral matter effects in rapid pyrolysis of beech wood. Fuel Process Technol. ;51:7&#;17. https://doi.org/10./S-(96)-0.

  105. Akhtar J, Amin NS. A review on operating parameters for optimum liquid oil yield in biomass pyrolysis. Renew Sustain Energy Rev. ;16:&#;9. https://doi.org/10./j.rser..05.033.

  106. Safdari MS, Amini E, Weise DR, Fletcher TH. Heating rate and temperature effects on pyrolysis products from live wild land fuels. Fuel. ;242:295&#;304. https://doi.org/10./j.fuel..01.040.

  107. Bridgwater AV. Principles and practice of biomass fast pyrolysis processes for liquids. J Anal Appl Pyrolysis. ;51:3&#;22. https://doi.org/10./S-(99)-4.

  108. Demirbas A. Effects of temperature and particle size on biochar yield from pyrolysis of agricultural residues. J Anal Appl Pyrolysis. ;72:243&#;8. https://doi.org/10./j.jaap..07.003.

  109. Qin L, Shao Y, Hou Z, Jiang E. Effect of temperature on the physicochemical characteristics of pine nut shell pyrolysis products in a screw reactor. Energy Sourc A. https://doi.org/10./...

  110. Park HJ, Dong JI, Jeon JK, Park YK, Yoo KS, Kim SS, Kim J, Kim S. Effects of the operating parameters on the production of bio-oil in the fast pyrolysis of Japanese larch. Chem Eng J. ;143:124&#;32. https://doi.org/10./j.cej..12.031.

  111. Gao Z, Li N, Yin S, Yi W. Pyrolysis behavior of cellulose in a fixed bed reactor: residue evolution and effects of parameters on products distribution and bio-oil composition. Energy. ;175:&#;74. https://doi.org/10./j.energy..03.094.

  112. Angın D. Effect of pyrolysis temperature and heating rate on biochar obtained from pyrolysis of safflower seed press cake. Bioresour Technol. ;128:593&#;7. https://doi.org/10./j.biortech..10.150.

  113. Encinar JM, Beltrán FJ, Bernalte A, Ramiro A, González JF. Pyrolysis of two agricultural residues: olive and grape bagasse. Influence of particle size and temperature. Biomass Bioenergy. ;11:397&#;409. https://doi.org/10./S-(96)-3.

  114. Horne PA, Williams PT. Influence of temperature on the products from the flash pyrolysis of biomass. Fuel. ;75:&#;9. https://doi.org/10./-(96)-6.

  115. Scott DS, Majerski P, Piskorz J, Radlein D. A second look at fast pyrolysis of biomass - the RTI process. J Anal Appl Pyrolysis. ;51:23&#;37. https://doi.org/10./S-(99)-6.

  116. Asadullah M, Rahman MA, Ali MM, Motin MA, Sultan MB, Alam MR, Rahman MS. Jute stick pyrolysis for bio-oil production in fluidized bed reactor. Bioresour Technol. ;99:44&#;50. https://doi.org/10./j.biortech..12.002.

  117. Putun AE, Ozcan A, Putun E. Pyrolysis of hazelnut shells in a fixed-bed tubular reactor: yields and structural analysis of bio-oil. J Anal Appl Pyrol. ;52:33&#;49. https://doi.org/10./S-(99)-3.

  118. Putun AE, Apaydin E, Putun E. Bio-oil production from pyrolysis and steam pyrolysis of soybean-cake: product yields and composition. Energy. ;27:703&#;13. https://doi.org/10./S-(02)-4.

  119. Putun E, Ates F, Putun AE. Catalytic pyrolysis of biomass in inert and steam atmospheres. Fuel. ;87:815&#;24. https://doi.org/10./j.fuel..05.042.

  120. Chan WCR, Kelbon M, Krieger BB. Modelling and experimental verification of physical and chemical processes during pyrolysis of a large biomass particle. Fuel. ;64:&#;13. https://doi.org/10./-(85)-3.

  121. Shen J, Wang XS, Garcia-Perez M, Mourant D, Rhodes MJ, Li CZ. Effects of particle size on the fast pyrolysis of oil mallee woody biomass. Fuel. ;88:&#;7. https://doi.org/10./j.fuel..05.001.

  122. Kang BS, Lee KH, Park HJ, Park YK, Kim JS. Fast pyrolysis of radiata pine in a bench scale plant with a fluidized bed: in fluence of a char separation system and reaction conditions on the production of bio-oil. J Anal Appl Pyrolysis. ;76:32&#;7. https://doi.org/10./j.jaap..06.012.

  123. Abnisa F, Daud WMAW, Wan WMA, Husin WNW, Sahu JN. Utilization possibilities of palm shell as a source of biomass energy in Malaysia by producing bio-oil in pyrolysis process. Biomass Bioenergy. ;35:&#;72. https://doi.org/10./j.biombioe..01.033.

  124. Onay O, Beis SH, Koçkar OM. Fast pyrolysis of rape seed in a well-swept fi xed-bed reactor. J Anal Appl Pyrolysis. ;58-59:995&#;. https://doi.org/10./S-(00)-9.

  125. Guedes RE, Luna AS, Torres AR. Operating parameters for bio-oil production in biomass pyrolysis: a review. J Anal Appl Pyrolysis. ;129:134&#;49. https://doi.org/10./j.jaap..11.019.

  126. Garcia-Nunez JA, Pelaez-Samaniego MR, Garcia-Perez ME, Fonts I, Abrego J, Westerhof RJM, Garcia-Perez M. Historical developments of pyrolysis reactors: a review. Energy Fuel. ;31:&#;75. https://doi.org/10./acs.energyfuels.7b.

  127. Venderbosch RH, Prins W. Fast Pyrolysis technology development. Biofuels Bioprod Biorefin. ;4:178&#;208. https://doi.org/10./bbb.205.

  128. Warnecke R. Gasification of biomass: comparison of fixed bed and fluidized bed gasifier. Biomass Bioenergy. ;18:489&#;97. https://doi.org/10./S-(00)-X.

  129. Lédé J. Comparison of contact and radiant ablative pyrolysis of biomass. J Anal Appl Pyrolysis. ;70:601&#;18. https://doi.org/10./S-(03)-3.

  130. Luo G, Chandler DS, Anjos LCA, Eng RJ, Jia P, Resende FLP. Pyrolysis of whole wood chips and rods in a novel ablative reactor. Fuel. ;194:229&#;38. https://doi.org/10./j.fuel..01.010.

  131. Wagenaar BM, Prins W, von Swaaij WPM. Pyrolysis of biomass in the rotating cone reactor: modelling and experimental justification. Chem Eng Sci. ;49:&#;26. https://doi.org/10./-(94)-0.

  132. Funke A, Henrich E, Dahmen N, Sauer J. Dimensional analysis of auger-type fast pyrolysis reactors. Energ Technol. ;5:119&#;29. https://doi.org/10./ente..

    If you are looking for more details, kindly visit Pyrolysis Machine.

47

0

0

Comments

0/2000

All Comments (0)

Guest Posts

If you are interested in sending in a Guest Blogger Submission,welcome to write for us!

Your Name:(required)

Your Email:(required)

Subject:

Your Message:(required)