Login

Your Name:(required)

Your Password:(required)

Join Us

Your Name:(required)

Your Email:(required)

Your Message :

Your Position: Home - Agriculture - How Does 26700 Lithium-ion battery cells Work?

How Does 26700 Lithium-ion battery cells Work?

Author: Minnie

Dec. 02, 2024

Agricultural

What is Lithium-ion Battery?

A battery, or a cell, typically refers to a cylindrical rechargeable battery.

Please visit our website for more information on this topic.

 

The name "" might sound like a code from a sci-fi movie, but it actually refers to a specific battery size. The "26" denotes the diameter of the battery in millimeters, while "700" signifies its length, also in millimeters. For reference, this battery is slightly larger than the more commonly known and battery sizes.

 

lithium-ion batteries are high energy density batteries with a long cycle life and no memory effect. They are suitable for EV battery packs and solar farms. When buying a lithium-ion battery, you can consider things like voltage and capacity, charge/discharge rate, depth of discharge, life span, warranty, and expandable capabilities.

 

Key Features of the Lithium-ion Battery

 

Capacity and Energy Density  

One of the standout features of the battery is its high capacity. Typically, these batteries have a capacity ranging from mAh to mAh, which translates to a significant amount of energy storage. This makes them ideal for applications requiring extended usage times.

 

Voltage and Power Output  

batteries generally operate at a nominal voltage of 3.7V. This standard voltage makes them compatible with a wide range of devices. Their power output is also impressive, supporting high-drain applications without compromising performance.

 

Lifespan and Cycle Life  

Lithium-ion batteries are known for their longevity, and the is no exception. With proper care, these batteries can offer hundreds of charge cycles before experiencing a noticeable decline in performance. This makes them a cost-effective choice in the long run.

 

Advantages of Lithium-ion Batteries

 

High Capacity  

One of the major advantages of the battery is its high capacity. This means you get more power in a single charge, which is particularly useful for power-hungry devices or applications where changing batteries frequently is inconvenient.

 

Lightweight and Compact  

Despite its larger size compared to other batteries, the is still relatively lightweight and compact. This makes it a versatile choice for various applications, balancing size with power.

 

Fast Charging Capabilities  

Modern lithium-ion batteries are designed for fast charging. This feature is especially beneficial for devices that need to be recharged quickly, reducing downtime and enhancing user convenience.

 


Common Applications

 

Power Tools: The high capacity and power output of the battery make it an excellent choice for power tools. Whether it&#;s for drills, saws, or other equipment, this battery can handle the demanding needs of these tools with ease.

 

Electric Vehicles: Electric vehicles (EVs) are another area where the battery shines. Its ability to provide significant energy storage makes it suitable for powering EVs, contributing to longer driving ranges and improved performance.

 

Portable Electronics: From flashlights to portable gaming devices, the battery is versatile enough to be used in various portable electronics. Its long-lasting power ensures that these devices can be used for extended periods without frequent recharging.

 

Comparison with Other Lithium-ion Batteries

 

vs.  

The battery is smaller in diameter and length compared to the . While both batteries have similar voltage ratings, the offers higher capacity and longer runtime due to its larger size.

 

vs.  

The battery is another size that is often compared to the . The is slightly longer, but both batteries share similar capacities. The choice between the two often comes down to specific requirements and device compatibility.

 

Charging and Maintenance Tips

 

Optimal Charging Practices: To maximize the lifespan of your battery, it&#;s important to follow optimal charging practices. Use a charger that is specifically designed for lithium-ion batteries and avoid overcharging, as this can damage the battery over time.

 

Storage and Handling Tips: Store your batteries in a cool, dry place to prevent degradation. Avoid exposing them to extreme temperatures or physical damage, which can impact their performance and safety.

 

Safety Precautions: Lithium-ion batteries are generally safe, but it&#;s crucial to handle them with care. Avoid puncturing or damaging the battery, and never dispose of it in a fire. Proper safety measures help ensure the longevity and reliability of your battery.

 

Conclusion

 

In summary, the lithium-ion battery is a powerful and versatile option for various applications. Its high capacity, compact size, and fast charging capabilities make it a popular choice for power tools, electric vehicles, and portable electronics. As technology continues to advance, we can expect even more improvements and innovations in the field of lithium-ion batteries.

 

FAQs

 

What are the benefits of using a battery?  

The battery offers high capacity, lightweight design, and fast charging capabilities, making it ideal for power tools, electric vehicles, and portable electronics.

 

How does a battery compare to other types?  

Compared to smaller battery sizes like the , the provides higher capacity and longer runtime. It is also similar in performance to the but may offer different size compatibility.

 

What should I consider when choosing a battery?  

Consider factors such as capacity, voltage, and device compatibility when selecting a battery. Ensure that the battery meets the requirements of your specific application.

 

Can I use a battery in different devices?  

Recommended article:
Underground cable laying machine- Foeckersperger Group
How to Save Money When Buying pu dynamic seal
How to Select the Right Hydraulic Fittings and Couplers

With competitive price and timely delivery, Xiaolu sincerely hope to be your supplier and partner.

Yes, the battery is versatile and can be used in a variety of devices, including power tools, electric vehicles, and portable electronics, as long as the device is compatible with its size and specifications.

 

How do I properly dispose of a lithium-ion battery?  

Dispose of batteries through designated recycling programs or battery disposal centers. Avoid throwing them in regular trash or burning them, as this can have environmental and safety implications.

The High-power Lithium-ion

NOTE: This article has been archived. Please read our new "Types of Lithium-ion" for an updated version.


Most lithium-ion batteries for portable applications are cobalt-based. The system consists of a cobalt oxide positive electrode (cathode) and a graphite carbon in the negative electrode (anode). One of the main advantages of the cobalt-based battery is its high energy density. Long run-time makes this chemistry attractive for cell phones, laptops and cameras.

The widely used cobalt-based lithium-ion has drawbacks; it offers a relatively low discharge current. A high load would overheat the pack and its safety would be jeopardized. The safety circuit of the cobalt-based battery is typically limited to a charge and discharge rate of about 1C. This means that a mAh cell can only be charged and discharged with a maximum current of 2.4A. Another downside is the increase of the internal resistance that occurs with cycling and aging. After 2-3 years of use, the pack often becomes unserviceable due to a large voltage drop under load that is caused by high internal resistance. Figure 1 illustrates the crystalline structure of cobalt oxide.Figure 1: Cathode crystalline of lithium cobalt oxide has 'layered' structures. The lithium ions are shown bound to the cobalt oxide. During discharge, the lithium ions move from the cathode to the anode. The flow reverses on charge.In , scientists succeeded in using lithium manganese oxide as a cathode material. This substance forms a three-dimensional spinel structure that improves the ion flow between the electrodes. High ion flow lowers the internal resistance and increases loading capability. The resistance stays low with cycling, however, the battery does age and the overall service life is similar to that of cobalt. Spinel has an inherently high thermal stability and needs less safety circuitry than a cobalt system.Low internal cell resistance is the key to high rate capability. This characteristic benefits fast-charging and high-current discharging. A spinel-based lithium-ion in an cell can be discharged at 20-30A with marginal heat build-up. Short one-second load pulses of twice the specified current are permissible. Some heat build-up cannot be prevented and the cell temperature should not exceed 80°C.Figure 2: Cathode crystalline of
lithium manganese oxide
has a
'three-dimensional framework structure'.
This spinel structure, which is usually composed of diamond shapes connected into a lattice, appears after initial formation. This system provides high conductivity but lower energy density.
The spinel battery also has weaknesses. One of the most significant drawbacks is the lower capacity compared to the cobalt-based system. Spinel provides roughly mAh in an package, about half that of the cobalt equivalent. In spite of this, spinel still provides an energy density that is about 50% higher than that of a nickel-based equivalent.Figure 3: Format of cell.
The dimensions of this commonly used cell are: 18mm in diameter and 65mm in length.

Types of lithium-ion batteries

Lithium-ion has not yet reached full maturity and the technology is continually improving. The anode in today's cells is made up of a graphite mixture and the cathode is a combination of lithium and other choice metals. It should be noted that all materials in a battery have a theoretical energy density. With lithium-ion, the anode is well optimized and little improvements can be gained in terms of design changes. The cathode, however, shows promise for further enhancements. Battery research is therefore focusing on the cathode material. Another part that has potential is the electrolyte. The electrolyte serves as a reaction medium between the anode and the cathode.

The battery industry is making incremental capacity gains of 8-10% per year. This trend is expected to continue. This, however, is a far cry from Moore's Law that specifies a doubling of transistors on a chip every 18 to 24 months. Translating this increase to a battery would mean a doubling of capacity every two years. Instead of two years, lithium-ion has doubled its energy capacity in 10 years.

Today's lithium-ion comes in many "flavours" and the differences in the composition are mostly related to the cathode material. Table 1 below summarizes the most commonly used lithium-ion on the market today. For simplicity, we summarize the chemistries into four groupings, which are Cobalt, Manganese, NCM and Phosphate.

Chemical name

Material

Abbreviation

Short form

Notes

Lithium Cobalt Oxide1Also Lithium Cobalate or lithium-ion-cobalt)

LiCoO2
(60% Co)

LCO

Li-cobalt

High capacity; for cell laptop, camera

Lithium
Manganese Oxide
1
Also Lithium Manganate
or lithium-ion-manganese

LiMn2O4

LMO

Li-manganese, or spinel

Most safe; lower capacity than Li-cobalt but high specific power and long life.

Power tools,
e-bikes, EV, medical, hobbyist.

Lithium
Iron Phosphate
1

LiFePO4

LFP

Li-phosphate

Lithium Nickel Manganese Cobalt Oxide1, also lithium-manganese-cobalt-oxide

LiNiMnCoO2
(10&#;20% Co)

NMC

NMC

Lithium Nickel Cobalt Aluminum Oxide1

LiNiCoAlO2
9% Co)

NCA

NCA

Gaining importance
in electric powertrain and grid storage

Lithium Titanate2

Li4Ti5O12

LTO

Li-titanate

Table 1: Reference names for Li-ion batteries.We willuse the short form when appropriate.

1 Cathode material

2 Anode material

The cobalt-based lithium-ion appeared first in , introduced by Sony. This battery chemistry gained quick acceptance because of its high energy density. Possibly due to lower energy density, spinel-based lithium-ion had a slower start. When introduced in , the world demanded longer runtime above anything else. With the need for high current rate on many portable devices, spinel has now moved to the frontline and is in hot demand. The requirements are so great that manufacturers producing these batteries are unable to meet the demand. This is one of the reasons why so little advertising is done to promote this product. E-One Moli Energy (Canada) is a leading manufacturer of the spinel lithium-ion in cylindrical form. They are specializing in the and cell formats. Other major players of spinel-based lithium-ion are Sanyo, Panasonic and Sony.


Sony is focusing on the nickel-cobalt manganese (NCM) version. The cathode incorporates cobalt, nickel and manganese in the crystal structure that forms a multi-metal oxide material to which lithium is added. The manufacturer offers a range of different products within this battery family, catering to users that either needs high energy density or high load capability. It should be noted that these two attributes could not be combined in one and the same package; there is a compromise between the two. Note that the NCM charges to 4.10V/cell, 100mV lower than cobalt and spinel. Charging this battery chemistry to 4.20V/cell would provide higher capacities but the cycle life would be cut short. Instead of the customary 800 cycles achieved in a laboratory environment, the cycle count would be reduced to about 300.

The newest addition to the lithium-ion family is the A123 System in which nano-phosphate materials are added in the cathode. It claims to have the highest power density in W/kg of a commercially available lithium-ion battery. The cell can be continuously discharged to 100% depth-of-discharge at 35C and can endure discharge pulses as high as 100C. The phosphate-based system has a nominal voltage of about 3.3V/cell and peak charge voltage is 3.60V. This is lower than the cobalt-based lithium-ion and the battery will require a designated charger. Valance Technology was the first to commercialize the phosphate-based lithium-ion and their cells are sold under the Saphionâ name.

In Figure 4 we compare the energy density (Wh/kg) of the three lithium-ion chemistries and place them against the traditional lead acid, nickel-cadmium, nickel-metal-hydride. One can see the incremental improvement of Manganese and Phosphate over older technologies. Cobalt offers the highest energy density but is thermally less stable and cannot deliver high load currents.

Figure 4: Energy densities of common battery chemistries.

Definition of Energy Density and Power Density

Energy Density (Wh/kg) is a measure of how much energy a battery can hold. The higher the energy density, the longer the runtime will be. Lithium-ion with cobalt cathodes offer the highest energy densities. Typical applications are cell phones, laptops and digital cameras.
Power Density (W/kg) indicates how much power a battery can deliver on demand. The focus is on power bursts, such as drilling through heavy steel, rather than runtime. Manganese and phosphate-based lithium-ion, as well as nickel-based chemistries, are among the best performers. Batteries with high power density are used for power tools, medical devices and transportation systems.

An analogy between energy and power densities can be made with a water bottle. The size of the bottle is the energy density, while the opening denotes the power density. A large bottle can carry a lot of water, while a large opening can pore it quickly. The large container with a wide mouth is the best combination.

Confusion with voltages

For the last 10 years or so, the nominal voltage of lithium-ion was known to be 3.60V/cell. This was a rather handy figure because it made up for three nickel-based batteries (1.2V/cell) connected in series. Using the higher cell voltages for lithium-ion reflects in better watt/hours readings on paper and poses a marketing advantage, however, the equipment manufacturer will continue assuming the cell to be 3.60V.
The nominal voltage of a lithium-ion battery is calculated by taking a fully charged battery of about 4.20V, fully discharging it to about 3.00V at a rate of 0.5C while measuring the average voltage.

Because of the lower internal resistance, the average voltage of a spinel system will be higher than that of the cobalt-based equivalent. Pure spinel has the lowest internal resistance and the nominal cell voltage is 3.80V. The exception again is the phosphate-based lithium-ion. This system deviates the furthest from the conventional lithium-ion system

Prolonged battery life through moderation

Batteries live longer if treated in a gentle manner. High charge voltages, excessive charge rate and extreme load conditions have a negative effect on battery life. The longevity is often a direct result of the environmental stresses applied. The following guidelines suggest ways to prolong battery life.

-The time at which the battery stays at 4.20/cell should be as short as possible. Prolonged high voltage promotes corrosion, especially at elevated temperatures. Spinel is less sensitive to high voltage.

-3.92V/cell is the best upper voltage threshold for cobalt-based lithium-ion. Charging batteries to this voltage level has been shown to double cycle life. Lithium-ion systems for defense applications make use of the lower voltage threshold. The negative is a much lower capacity.

-The charge current of Li-ion should be moderate (0.5C for cobalt-based lithium-ion). The lower charge current reduces the time in which the cell resides at 4.20V. A 0.5C charge only adds marginally to the charge time over 1C because the topping charge will be shorter. A high current charge tends to push the voltage into voltage limit prematurely.

-Do not discharge lithium-ion too deeply. Instead, charge it frequently. Lithium-ion does not have memory problems like nickel-cadmium batteries. No deep discharges are needed for conditioning.

-Do not charge lithium-ion at or below freezing temperature. Although accepting charge, an irreversible plating of metallic lithium will occur that compromises the safety of the pack.

Not only does a lithium-ion battery live longer with a slower charge rate; moderate discharge rates also help. Figure 5 shows the cycle life as a function of charge and discharge rates. Observe the improved laboratory performance on a charge and discharge rate of 1C compared to 2 and 3C.

Figure 5: Longevity of lithium-ion as a function of charge and discharge rates.
Lithium-cobalt enjoys the highest energy density. Manganese and phosphate systems are terminally more stable and deliver high load currents than cobalt.

Battery experts agree that the longevity of lithium-ion is shortened by other factors than charge and discharge rates. Even though incremental improvements can be achieved with careful use, our environment and the services required are not always conducive for optimal battery life. In this respect, the battery behaves much like us humans - we cannot always live a life that caters to achieve maximum life span.

The company is the world’s best Lithium-ion battery cells supplier. We are your one-stop shop for all needs. Our staff are highly-specialized and will help you find the product you need.

10

0

0

Comments

0/2000

All Comments (0)

Guest Posts

If you are interested in sending in a Guest Blogger Submission,welcome to write for us!

Your Name:(required)

Your Email:(required)

Subject:

Your Message:(required)